Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 393: 130105, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38008223

RESUMO

Hydrochars are promising adsorbents in pollutant removal for water treatment. Herein, hydrochloric acid (HCl) co-hydrothermally treated hydrochars were prepared from rice husk biomass at 180 °C via a one-step hydrothermal method. Adsorption behaviors of levofloxacin (LVX) on hydrochars were evaluated. The specific surface area and pore volume of the hydrochar synthesized in 5 mol/L HCl (5H-HC) were almost 17 and 8 times of untreated hydrochar, respectively. The 5H-HC sample exhibited the highest LVX adsorption capability at room temperature (107 mg/g). Thermodynamic experimental results revealed that adsorption was a spontaneous endothermic process. Yan model provided the best description of the breakthrough behavior of LVX in bioretention column, indicating that the adsorption on the samples involved several rate-limiting factors including diffusion and mass transfer. The results show that facile HCl co-hydrothermal carbonization of waste biomass can produce novel hydrochars with high LVX adsorption ability.


Assuntos
Oryza , Ácido Clorídrico , Levofloxacino , Termodinâmica , Adsorção , Carbono
2.
Chemosphere ; 349: 140932, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096991

RESUMO

In this paper, the two-dimensional (2D) layered CoAl LDH (CoAl) was coupled with Bi2MoO6 (BMO) nanoplate and used for tetracycline (TC) degradation. Based on the results of UV-visible diffuse reflectance spectrum (UV-vis DRS), Motty-Schottky curves, and in situ X-ray photoelectron spectroscopy (XPS), a novel 2D/2D Bi2MoO6/CoAl LDH S-scheme heterojunction photocatalyst was built. The photodegradation rate constant of TC by the optimized sample BMO/CoAl30 was 3.637 × 10-2 min-1, which was 1.26 times and 4.01 times higher than that of Bi2MoO6 and CoAl LDH, respectively. The favorable photocatalytic performance of the heterojunction was attributed to the increased interfacial contact area of the 2D/2D structure. Besides, the transfer of photogenerated electrons from Bi2MoO6 to CoAl LDH under the effect of the built-in electric field (BIEF) reduced the recombination of photogenerated carriers and further improved the photocatalytic performance. The reactive species of h+, ·O2-, and 1O2 exhibited critical roles to degrade TC molecules by reactive radicals capture experiments and electron spin resonance (ESR) tests. The intermediate products of TC degradation and toxicity of intermediates were analyzed by liquid chromatography-mass spectrometer (LC-MS) and Toxicity Estimation Software Tool (T.E.S.T). Additionally, the BMO/CoAl composite photocatalysts showed high stability and environmental tolerance during the testing of cycles and environmental impacts with various water sources, organic contaminants, initial pH, and inorganic ions. This work provides a new protocol for designing and constructing novel 2D/2D S-scheme heterojunction photocatalysts for wastewater treatment.


Assuntos
Compostos Heterocíclicos , Tetraciclina , Antibacterianos , Bismuto , Cromatografia Líquida , Carvão Mineral
3.
J Environ Manage ; 342: 118127, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37178465

RESUMO

Traditional membranes are inefficient in treating highly toxic organic pollutants and oily wastewater in harsh environments, which is difficult to meet the growing demand for green development. Herein, the Co(OH)2@stearic acid nanocellulose-based membrane was prepared by depositing Co(OH)2 on the nanocellulose-based membrane (NBM) through chemical soaking method, which enables efficient oil/water mixtures separation and degradation of pollutants by photocatalysis in harsh environments. The Co(OH)2@stearic acid nanocellulose-based membrane (Co(OH)2@stearic acid NBM) shows good photocatalytic degradation performance for methylene blue pollutants in harsh environment, and has significant degradation rate (93.66%). At the same time, the Co(OH)2@stearic acid NBM with superhydrophobicity and superoleophilicity also exhibits respectable oil/water mixtures separation performance (n-Hexane, dimethyl carbonate, chloroform and toluene) under harsh environment (strong acid/strong alkali), which has an excellent oil-water mixtures separation flux of 87 L·m-2·h-1 (n-Hexane/water) and oil-water mixture separation efficiency of over 93% (n-Hexane/water). In addition, this robust Co(OH)2@stearic acid NBM shows good self-cleaning and recycling performance. Even though seven oil-water separation tests have been carried out under harsh environment, it can still maintain respectable oil-water mixture separation rate and flux. The multifunctional membrane has excellent resistance to harsh environments, oil-water separation and pollutant degradation can be performed even in harsh environments, which provides a convenient way to treat sewage under harsh conditions efficiently and has great potential in practical application.


Assuntos
Poluentes Ambientais , Purificação da Água , Membranas
4.
J Hazard Mater ; 443(Pt B): 130300, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36345061

RESUMO

Layered double hydroxide (LDH) materials were widely applied for adsorption and photodegradation of pollutants for wastewater treatment. New efficient LDH materials with adsorption and photodegradation abilities will be promising candidates for pollutants removal. Hence, a series of NiFe-LDH/biochar (NiFe/BC) were fabricated by the coprecipitation method for synergistic adsorption and photodegradation anionic dyes of reactive red 120 (RR120). The removal experiment showed that the addition of an appropriate amount of biochar into NiFe-LDH enhanced the adsorption capacity and its photocatalytic ability. The optimized NiFe/BC2 composite can remove 88.5 % of RR120 under visible light by adsorption and photocatalysis, which was much better than NiFe-LDH (63.3 %) and biochar (2.6 %). The photodegradation kinetic constant of the NiFe/BC2 composite was 3.1 and 104.8 times that of NiFe-LDH and BC. In addition, active species capture experiments and electron spin resonance (ESR) tests revealed the removal mechanisms of NiFe/BC composites for RR120 removal. This work affords a feasible strategy for preparing LDH-based photocatalyst with excellent adsorption and photocatalytic performance for wastewater treatment.


Assuntos
Poluentes Ambientais , Níquel , Adsorção , Ferro , Fotólise , Hidróxidos
5.
Chemosphere ; 309(Pt 2): 136802, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36220437

RESUMO

Improving the adsorption ability of layered double hydroxide (LDH) has been considered as a promising strategy to promote its photodegradation of aqueous pollutants. In this work, nickel-aluminium layered double hydroxides (NiAl-LDH)/biochar nanocomposites were prepared using a simple coprecipitation method, and then applied in synergistic adsorption-photodegradation of tetracycline (TC) in aqueous solutions. In addition, the governing TC removal mechanisms by the nanocomposites were revealed. All NiAl-LDH/BC samples showed strong adsorption and photodegradation of TC. The Langmuir maximum TC adsorption capacity of optimized NiAl-LDH/BC-0.5 reached 124.2 mg/g, which was much better than that of NiAl-LDH (56.1 mg/g) and biochar (11.1 mg/g). Besides, TC photodegradation rate constant of NiAl/BC-0.5 was 3.6 and 4.4 times of that of NiAl-LDH and BC, respectively. The NiAl/BC-0.5 exhibited the maximum TC adsorption-photodegradation efficiency 94.4% in 90 min compared to NiAl-LDH (73.7%) and BC (48.2%). The rate constant of modified Elovich kinetic model for synergistic adsorption and photodegradation on NiAl/BC-0.5 (9.477 min-1) was the highest among the composites. The NiAl-LDH/BC had significantly larger BET surface areas than NiAl-LDH and BC. The step scheme (S-scheme) heterostructures were constructed on the interface of BC and NiAl-LDH in nanocomposites, which facilitated the transfer of photo-induced charges. This work demonstrates that combination of NiAl-LDH and biochar can create synergy for TC adsorption-photodegradation, which is a promising and green strategy.


Assuntos
Alumínio , Poluentes Químicos da Água , Adsorção , Alumínio/química , Níquel/química , Poluentes Químicos da Água/química , Fotólise , Hidróxidos/química , Tetraciclina , Hidróxido de Alumínio/química , Antibacterianos
6.
J Environ Manage ; 308: 114652, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35124312

RESUMO

In this paper, bismuth oxybromide (BiOBr)/biochar composites were synthesized by a facile ball milling method for synergistic adsorption and photodegradation of Reactive red 120 (RR120). The characterizations show that ball milling changed the degree of crystallization, increased the surface area, and promoted the charge transfer ability of biochar. The 70% BiOBr/BC composite showed the best removal efficiency for RR120 removal with or without light illumination, which proves its enhanced removal ability by adsorption and photodegradation. The biochar is served as a support of BiOBr for preventing its aggregation and a transporter of charges for promoting the separation of photo-induced carriers in composites. BiOBr can release the adsorption sites on the surface of composites by degradation, which facilitated the RR120 removal and regenerated the photocatalyst for reusing. The strong interactions between BiOBr and biochar in composites resulted from ball milling were beneficial for the charge transfer and synergistic removal of adsorption and degradation. Findings of this work indicate that ball milling method is an effective method to prepare highly efficient biochar-based composites for RR120 removal through synergistic adsorption and photodegradation.


Assuntos
Bismuto , Carvão Vegetal , Adsorção , Carvão Vegetal/química , Fotólise
7.
J Colloid Interface Sci ; 611: 93-104, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34933194

RESUMO

Wastewater is typically complicated with spilled oil, water soluble toxic dyes and microorganisms, making it hard to be processed and causing a significant threat to the environmental safety and human health. In this paper, we demonstrate a simple solution immersion method to obtain a multifunctional cellulose-based membrane (CBM) that possesses both superhydrophobicity with a water contact angle of 163° and superior functionalities including self-cleaning, oil-water separation, anti-biofouling, and photocatalytic degradation capabilities. The achievement of separation efficiency (96%), comparatively high flux (141 L·m-2·h-1) and recyclable (7 times) oil/water separation performance is attributed to the robust superhydrophobicity enabled by the synergy of metal oxide (i.e., CuO) nanostructure coating and stearic acid (SA) modification. The superhydrophobic CBM also preferentially adsorbs organic dyes in aqueous solution, e.g., methylene blue (MB), promoting their efficient decomposition (about 70.3% of MB decomposed in 3 h) with high recyclability under UV irradiation. Most remarkably, the CBM exhibits superior anti-biofouling capability and persistently resists the algae adhesion in long duration (over 20 days), as a result of the self-cleaning ability as well as the antimicrobial property of CuO nanoparticles. Our finding here paves the way to use simple, cost-effective, environmentally safe, and reliable method to fabricate multifunctional materials for wastewater treatment in complex environments.


Assuntos
Incrustação Biológica , Nanopartículas , Purificação da Água , Incrustação Biológica/prevenção & controle , Humanos , Interações Hidrofóbicas e Hidrofílicas , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...